太空君
数学高考真题解答题解析参考

数学高考真题解答题解析参考

2025-03-16
4 min read
内容目录
数学高考真题解答题解析参考

解答题思路梳理详解步骤,给数学不是很好或者解答有疑问的人一个思路参考,对数学有兴趣的人可以看看,锻炼数学做题解题思路,提高做题能力。

解答题17题

17.(10分)

已知在 △ABC 中, ( A + B = 3C ), 2sin(AC)=sinB 2\sin(A - C) = \sin B .

(1)求 sinA\sin A
(2)设 ( AB = 5 ),求 AB 边上的高。

🧠 解题思路与详细解析

✦ 第一步:整理条件

在三角形中,角和恒有:

A+B+C=πA + B + C = \pi

而题干给出:
A+B=3C A + B = 3C

代入总角和:

3C+C=πC=π4 3C + C = \pi \Rightarrow C = \frac{\pi}{4}

所以:

A+B=3π4A+B=135A+B=3C A + B = \frac{3\pi}{4} \Rightarrow A + B = 135^\circ \Rightarrow A + B = 3C


✦ 第二步:求 sinA \sin A

利用题干给出的三角恒等式:
2sin(AC)=sinB 2\sin(A - C) = \sin B

我们已经知道 C=π4 C = \frac{\pi}{4}

又由 A+B=3π4 A + B = \frac{3\pi}{4}
B=3π4A B = \frac{3\pi}{4} - A

代入恒等式:

2sin(Aπ4)=sin(3π4A) 2\sin(A - \frac{\pi}{4}) = \sin(\frac{3\pi}{4} - A)

我们使用正弦函数差角公式:

左边: 2sin(Aπ4)=2[sinAcosπ4cosAsinπ4]=2[sinA22cosA22]=2(sinAcosA) 2\sin(A - \frac{\pi}{4}) = 2\left[\sin A \cos \frac{\pi}{4} - \cos A \sin \frac{\pi}{4}\right] = 2\left[\sin A \cdot \frac{\sqrt{2}}{2} - \cos A \cdot \frac{\sqrt{2}}{2}\right] = \sqrt{2}(\sin A - \cos A)

sin(3π4A)=sin(π2+π4A)=cos(Aπ4)=cosAcosπ4+sinAsinπ4=cosA22+sinA22=22(cosA+sinA) \sin(\frac{3\pi}{4} - A) = \sin(\frac{\pi}{2} + \frac{\pi}{4} - A) = \cos(A - \frac{\pi}{4}) = \cos A \cos \frac{\pi}{4} + \sin A \sin \frac{\pi}{4} = \cos A \cdot \frac{\sqrt{2}}{2} + \sin A \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(\cos A + \sin A)

于是有:

2(sinAcosA)=22(cosA+sinA) \sqrt{2}(\sin A - \cos A) = \frac{\sqrt{2}}{2}(\cos A + \sin A)

两边同时除以 2 \sqrt{2} 得:

sinAcosA=12(cosA+sinA) \sin A - \cos A = \frac{1}{2} (\cos A + \sin A)

移项:

sinA12sinA=cosA+12cosA12sinA=32cosAtanA=3 \sin A - \frac{1}{2} \sin A = \cos A + \frac{1}{2} \cos A \Rightarrow \frac{1}{2} \sin A = \frac{3}{2} \cos A \Rightarrow \tan A = 3

所以:

sinA=310,cosA=110 \sin A = \frac{3}{\sqrt{10}},\quad \cos A = \frac{1}{\sqrt{10}}

(注意由 tanA=3 \tan A = 3 \Rightarrow 构造直角三角形:对边 3,邻边 1,斜边 10 \sqrt{10}


✅ 第(1)问答案:

sinA=310=31010 \sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}

问题二 求 AB 边上的高

✅ 第一步:使用正弦定理表达 a a 的值

正弦定理: asinA=csinCa=csinAsinC \frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow a = \frac{c \sin A}{\sin C}

AB = 5 AB边即c 带入:

  • c=5 c = 5
  • sinA=31010 \sin A = \frac{3\sqrt{10}}{10}
  • sinC=22 \sin C = \frac{\sqrt{2}}{2}

代入计算:

a=53101022=3102522=310222=35 a = \frac{5 \cdot \frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}} = \frac{3\sqrt{10}}{2} \cdot \frac{5}{\frac{\sqrt{2}}{2}} = \frac{3\sqrt{10}}{2} \cdot \frac{2}{\sqrt{2}} = 3\sqrt{5}


✅ 第二步:由 sinA=3cosA \sin A = 3\cos A 推出 cosA=1010 \cos A = \frac{\sqrt{10}}{10}

由第(1)问已知:

tanA=3sinA=3cosAcosA=sinA3=310/103=1010 \tan A = 3 \Rightarrow \sin A = 3\cos A \Rightarrow \cos A = \frac{\sin A}{3} = \frac{3\sqrt{10}/10}{3} = \frac{\sqrt{10}}{10}


✅ 第三步:用正弦加法公式求 sinB \sin B

我们知道:

B=135A=A+CsinB=sin(A+C)=sinAcosC+cosAsinC B = 135^\circ - A = A + C \Rightarrow \sin B = \sin(A + C) = \sin A \cos C + \cos A \sin C

代入具体数值:

  • sinA=31010 \sin A = \frac{3\sqrt{10}}{10}
  • cosC=22 \cos C = \frac{\sqrt{2}}{2}
  • cosA=1010 \cos A = \frac{\sqrt{10}}{10}
  • sinC=22 \sin C = \frac{\sqrt{2}}{2}

代入得:

sinB=3101022+101022=42020=255 \sin B = \frac{3\sqrt{10}}{10} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{10}}{10} \cdot \frac{\sqrt{2}}{2} = \frac{4\sqrt{20}}{20} = \frac{2\sqrt{5}}{5}


✅ 第四步:再用正弦定理求边 b b

bsinB=csinCb=csinBsinC=525522=210 \frac{b}{\sin B} = \frac{c}{\sin C} \Rightarrow b = \frac{c \sin B}{\sin C} = \frac{5 \cdot \frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}} = 2\sqrt{10}


✅ 第五步:用面积公式求高

面积公式(用高): S=12ch S = \frac{1}{2} \cdot c \cdot h

面积公式(用两边+夹角): S=12bcsinA S = \frac{1}{2} b \cdot c \cdot \sin A

两边式子相等(都是求三角形面积S):

12ch=12bcsinAh=bsinA=21031010=61010=6 \frac{1}{2} \cdot c \cdot h = \frac{1}{2} b \cdot c \cdot \sin A \Rightarrow h = b \cdot \sin A = 2\sqrt{10} \cdot \frac{3\sqrt{10}}{10} = \frac{6 \cdot 10}{10} = 6


✅ 最终答案为:高 = 6